Accuracy indicators for evaluating retrospective performance of energy system models
Xin Wen,
Marc Jaxa-Rozen and
Evelina Trutnevyte
Applied Energy, 2022, vol. 325, issue C, No S0306261922011667
Abstract:
Retrospective evaluation of energy system models and scenarios is essential for ensuring their robustness for prospective policy support. However, quantitative evaluations currently lack systematic methods to be more holistic and informative. This paper reviews existing accuracy indicators used for retrospective evaluations of energy models and scenarios with the aim to find a small suite of complementary indicators. We quantify and compare 24 indicators to assess the retrospective performance of D-EXPANSE electricity sector modeling framework, used to model 31 European countries in parallel from 1990–2019. We find that symmetric mean percentage error, symmetric mean absolute percentage error, symmetric median absolute percentage error, root-mean-squared logarithmic error, and growth error together form the most informative suite of indicators. This study is the first step towards developing a model accuracy testbench to assess energy models and scenarios in multiple dimensions retrospectively.
Keywords: Energy system models; Energy projections; Energy scenarios; Accuracy indicators; Optimization; Model evaluation (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922011667
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:325:y:2022:i:c:s0306261922011667
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2022.119906
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().