EconPapers    
Economics at your fingertips  
 

A coupled power battery cooling system based on phase change material and its influencing factors

Jie Luo, Heng Gu, Shuo Wang, Hao Wang and Deqiu Zou

Applied Energy, 2022, vol. 326, issue C, No S0306261922011746

Abstract: With the improvement of electric vehicle technology and requirements, power battery thermal management systems should not only have excellent temperature control ability but also meet the development requirements of compactness and lightweight. To achieve this goal, a pipeless cooling system coupled with shape-stabilized phase change material (SSPCM) channel and phase change emulsion (PCE) was proposed. In this study, the thermal performance of cooling systems based on metal channel and SSPCM channel were compared, and the thermal properties of the PCE/SSPCM channel system and the Water/SSPCM channel system were compared. Based on the above, the key factors affecting the PCE/SSPCM channel battery thermal management system were analyzed. Finally, the effects of these factors were studied together by an orthogonal simulation. The results show that the maximum temperature and the maximum temperature difference of the SSPCM channel system were 16.8 °C and 3.3 °C lower than the metal channel system, respectively. And the PCE/SSPCM channel system surpasses the Water/SSPCM channel system when the PCE undergoes phase change at low inlet velocity. The orthogonal simulation results show that under the optimal parameters, the battery thermal management system can maintain the temperature and temperature difference of the battery module below 54.8 °C and 4.8 °C in 7 C charge–discharge cycles, which can meet the thermal management requirement of power battery under high-rate charge and discharge.

Keywords: Phase change material (PCM); Shape-stabilized phase change material (SSPCM); Battery thermal management system (BTMs); Orthogonal simulation (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922011746
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:326:y:2022:i:c:s0306261922011746

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2022.119917

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:326:y:2022:i:c:s0306261922011746