EconPapers    
Economics at your fingertips  
 

Microstructures and electrical conductivity properties of compressed gas diffusion layers using X-ray tomography

Lingfeng Ye, Diankai Qiu, Linfa Peng and Xinmin Lai

Applied Energy, 2022, vol. 326, issue C, No S0306261922011916

Abstract: Bulk resistance of the gas diffusion layer (GDL) plays an important role in the ohmic loss of proton exchange membrane fuel cells (PEMFCs). This work represents the first direct experimental study and comparison of the bulk resistances during the compression process of commonly used commercial GDLs, carbon paper and carbon felt, from the perspective of the microstructure mechanisms. The in-situ X-ray tomography and a fiber tracing algorithm are used to obtain the microstructure characteristics of compressed GDLs. The through-plane (T-P) and in-plane (I-P) bulk resistances of GDLs are measured by the microelectrode probe measurement method and the four-point probe method, respectively. Then, their resistivities are calculated. For the T-P direction, the arrangement of fibers gradually becomes compact during the compression, arousing the nearly linear increase of fiber contact points. Thus, more and more conductive paths are constructed, inducing a rapid decline of the T-P bulk resistivity. Since the fibers in carbon felt are entangled together, the fibers in the edge areas are arranged loosely at low compression. This uneven distribution of contact points in carbon felt results in much larger T-P bulk resistivity than that of carbon paper at low compressive strain. For carbon paper, binders contribute significantly to the smaller T-P resistivity because they tend to gather at the fiber intersections, which forms more conductive paths with better conductivity. For the I-P direction, the bulk resistivities of GDLs decrease linearly during compression. The nearly horizontal fibers are the key to the I-P bulk resistivity, and both smaller fiber density and higher fiber tortuosity lead to the increase of the I-P bulk resistivity. This study helps to understand the microstructure mechanisms of the bulk resistances of various GDLs during the compression process, which can guide the design and fabrication process of GDLs.

Keywords: Gas diffusion layer; Bulk resistance; Microstructure mechanism; Fiber tracing; Fiber contact point (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922011916
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:326:y:2022:i:c:s0306261922011916

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2022.119934

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:326:y:2022:i:c:s0306261922011916