EconPapers    
Economics at your fingertips  
 

Cost and time effective performance evaluation methods for photovoltaic module cooling techniques: Analytical and experimental study

Sakhr M. Sultan, C.P. Tso, E.M.N. Ervina and M.Z. Abdullah

Applied Energy, 2022, vol. 326, issue C, No S0306261922011977

Abstract: For assessing the performance of a photovoltaic module (PV) cooler, the temperature-dependent PV efficiency difference factor, FTDED, was introduced earlier. The assessment was accomplished by differentiating whether the PV cooler performance was contributing to the gain or loss to the PV efficiency. That method is costly because it requires the availability of a fixed amount of solar irradiance of 1000 W/m2 that satisfy the PV standard test conditions, and also the use of one unit of a PV without a cooler that has the same solar cell number as a PV with a cooler. This paper proposes new methods that have the flexibility to be applied under various solar irradiance values. The new methods depend on a PV that has a single solar cell only, without a cooler, when executing the performance assessment for a PV with a cooler that has a known number of solar cells. As a result, the assessment cost can be significantly reduced. An experimental work is conducted for three PV cooler types and found that the performance assessment cost can be reduced by up to 33.33 %, by using the new methods, as compared to using the existing method. Hence, the new methods are cost effective. It is also shown that the experimental measurements are the same as the results obtained from the new methods. When the new method (FTDPD) is compared with the temperature-dependent photovoltaic power difference (ΔP) that is defined and derived, it is shown that the computational work can be reduced, because it has less influential parameters, thus, it is also a time-efficient method. PV cooler designers and manufacturers could be the possible users of the new methods.

Keywords: Solar energy; Photovoltaic efficiency; Cooling technique; Performance assessment; Photovoltaic module (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922011977
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:326:y:2022:i:c:s0306261922011977

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2022.119940

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:326:y:2022:i:c:s0306261922011977