Self-supervised learning method for consumer-level behind-the-meter PV estimation
Chao Charles Liu,
Hongkun Chen,
Jing Shi and
Lei Chen
Applied Energy, 2022, vol. 326, issue C, No S0306261922012181
Abstract:
Driven by cost reduction and sustainable policies, the penetration of distributed photovoltaic (PV) systems has deepened in recent years. Most of these PV systems are installed behind the meter (BTM), where utilities cannot monitor their output levels directly. Some supervised methods have been studied to estimate BTM PV generation. These methods, however, cannot achieve accurate estimation without the dependency on training data labeled by additional measurements. As an alternative, a self-supervised learning method is proposed in this paper to train supervised estimation models from unlabeled data. Specifically, our proposed method synthesizes pseudo labels for unlabeled net load measurements using PV generation measurements of a small group of PV sites. Moreover, an end-to-end network architecture is proposed as the base estimation model. Based on a linear embedding of PV generation, the proposed end-to-end architecture can be directly trained with PV generation labels, which leads to a simplified training process and improved estimation performance. Extensive numerical simulations on two datasets from different hemispheres are carried out to verify the effectiveness of the proposed methodology.
Keywords: Behind-the-meter; Distributed photovoltaic; Net load disaggregation; Self-supervised learning; Smart meter (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922012181
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:326:y:2022:i:c:s0306261922012181
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2022.119961
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().