EconPapers    
Economics at your fingertips  
 

Experimental investigation of variational mode decomposition and deep learning for short-term multi-horizon residential electric load forecasting

Mohamed Aymane Ahajjam, Daniel Bonilla Licea, Mounir Ghogho and Abdellatif Kobbane

Applied Energy, 2022, vol. 326, issue C, No S030626192201220X

Abstract: With the booming growth of advanced digital technologies, it has become possible for users as well as distributors of energy to obtain detailed and timely information about the electricity consumption of households. These technologies can also be used to forecast the household’s electricity consumption (a.k.a. the load). In this paper, Variational Mode Decomposition and deep learning techniques are investigated as a way to improve the accuracy of the load forecasting problem. Although this problem has been studied in the literature, selecting an appropriate decomposition level and a deep learning technique providing better forecasting performance have garnered comparatively less attention. This study bridges this gap by studying the effect of six decomposition levels and five distinct deep learning networks. The raw load profiles are first decomposed into intrinsic mode functions using the Variational Mode Decomposition in order to mitigate their non-stationary aspect. Then, day, hour, and past electricity consumption data are fed as a three-dimensional input sequence to a four-level Wavelet Decomposition Network model. Finally, the forecast sequences related to the different intrinsic mode functions are combined to form the aggregate forecast sequence. The proposed method was assessed using load profiles of five Moroccan households from the Moroccan buildings’ electricity consumption dataset (MORED) and was benchmarked against state-of-the-art time-series models and a baseline persistence model.

Keywords: Short-term residential load forecasting; Multi-horizon forecasting; Variational mode decomposition; Deep learning (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626192201220X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:326:y:2022:i:c:s030626192201220x

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2022.119963

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:326:y:2022:i:c:s030626192201220x