Durability estimation and short-term voltage degradation forecasting of vehicle PEMFC system: Development and evaluation of machine learning models
Ze Liu,
Sichuan Xu,
Honghui Zhao and
Yupeng Wang
Applied Energy, 2022, vol. 326, issue C, No S0306261922012326
Abstract:
Proton exchange membrane fuel cell (PEMFC) systems are emerging as one of the most promising solutions for carbon neutrality in transportation, however, durability problem remain a major obstacle to their large-scale commercialization. Developing an accurate model to predict the short-term aging state and long-term durability level of PEMFC is conducive to formulating optimal measures in time and further to improving durability. In this paper, the short-term voltage degradation and long-term durability level are predicted and evaluated by combining machine learning (ML) methods with time-series voltage degradation data obtained under vehicle dynamic load. In the short-term forecasting stage, the long short-term memory (LSTM) model, the support vector regression (SVR) model, and the LSTM-SVR combination model are developed respectively, and the prediction results of the three models are compared and evaluated. The LSTM-SVR combined model achieved the best short-term prediction accuracy of 96.6%, followed by LSTM model (95.5%). Considering the difficulty of model deployment and the feasibility of quickly assessing long-term durability in practical application, a LSTM-based model rolling prediction mechanism is proposed to rapidly evaluate the long-term durability index of the developed PEMFC system, the results show that the proposed forecasting model and method can accurately predict the voltage degradation trend and quickly evaluate the long-term durability level, which not only makes contributions to greatly saving the durability R&D costs, but also provides the possibility to adjust the optimization measures in real-time to further improve the durability according to the prediction results.
Keywords: Vehicle PEMFC system; Degradation forecasting; Durability estimation; Data-driven modeling; Machine learning (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922012326
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:326:y:2022:i:c:s0306261922012326
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2022.119975
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().