A novel method for favorable zone prediction of conventional hydrocarbon accumulations based on RUSBoosted tree machine learning algorithm
Kuiyou Ma,
Xiongqi Pang,
Hong Pang,
Chuanbing Lv,
Ting Gao,
Junqing Chen,
Xungang Huo,
Qi Cong and
Mengya Jiang
Applied Energy, 2022, vol. 326, issue C, No S0306261922012405
Abstract:
The prediction of favorable zone (FZ) is the most important step for conventional hydrocarbon accumulations (CHAs) exploration. Recently, the method of coupling multiple hydrocarbon accumulation (HA) elements is widely used to predict the distribution of FZ in the petroleum exploration field. However, the forming mechanism of CHAs is extremely complicated, which causes difficulty in accurately describing the relationship between multiple HA elements and HA probability (HAP). Hence, it is difficult to predict the distribution of FZ quantitatively and credibly using traditional methods. This study proposes a method for predicting FZ for CHAs based on random undersampling boosted (RUSBoosted) tree machine learning (ML) algorithm. First, the characteristics of data in the petroleum exploration field are clarified, and a suitable ML algorithm is selected. Second, the theory and knowledge of the petroleum exploration field is integrated into the data, a HAP prediction model for CHAs is constructed, and then the method for FZ prediction is proposed. Further, the method is applied to Jin 93 Well Block for predicting FZ of CHAs. Finally, this study discussed the difference in performance among models constructed by the RUSBoosted tree and other five ML algorithms and the difference in training results between the original geological data and preprocessed geological data on the RUSBoosted tree ML algorithm. Results show that, currently, datasets in the petroleum exploration field are small and unbalanced, and the RUSBoosted tree ML algorithm has excellent training results on it. Compared with the original geological data, the performance of the HAP prediction model constructed by preprocessed geological data is improved. On a Jin 93 Well Block dataset, the HAP prediction model constructed by the RUSBoosted tree ML algorithm belongs to a good prediction model, and FZ of CHAs predicted by this HAP prediction model agree well with CHAs discovered areas. The results of this study provide an idea for intelligently predicting the distribution of FZ of CHAs and are of great significance to the development of intelligent petroleum exploration technology.
Keywords: Petroleum exploration; Conventional oil and gas; RUSBoost algorithm; Favorable zone forecast; Jin 93 Well Block; Shulu Sag (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922012405
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:326:y:2022:i:c:s0306261922012405
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2022.119983
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().