EconPapers    
Economics at your fingertips  
 

State of health estimation of second-life lithium-ion batteries under real profile operation

Elisa Braco, Idoia San Martín, Pablo Sanchis, Alfredo Ursúa and Daniel-Ioan Stroe

Applied Energy, 2022, vol. 326, issue C, No S0306261922012491

Abstract: The economic viability of second-life (SL) Li-ion batteries from electric vehicles (EVs) is still uncertain nowadays. Assessing the internal state of reused cells is key not only at the repurposing stage but also during their SL operation. As an alternative of the traditional capacity tests used to this end, the estimation of State of Health (SOH) allows to reduce the testing time and the need of equipment, thereby reinforcing the economic success of SL batteries. However, the estimation of SOH in real SL operation has been rarely analysed in literature. This contribution aims thus to cover this gap, by focusing on the experimental assessment of SOH estimation in reused modules from Nissan Leaf EVs under two SL scenarios: a residential household with self-consumption and a fast charge station for EVs. By means of partial charge and experimental data from cycling and calendar ageing tests, accuracy and robustness of health indicators is firstly assessed. Then, SOH estimation is carried out using real profiles, covering a SOH range from 91.3 to 31%. Offline assessment led to RMSE values of 0.6% in the residential profile and 0.8% in the fast charge station, with a reduction in testing times of 85% compared to a full capacity test. In order to avoid the interruption of battery operation, online assessment in profiles was also analysed, obtaining RMSE values below 1.3% and 3.6% in the residential and charging station scenarios, respectively. Therefore, the feasibility of SOH estimation in SL profiles is highlighted, as it allows to get accurate results reducing testing times or even without interrupting normal operation.

Keywords: Lithium-ion battery; Second-life batteries; State of health estimation; Residential storage; Fast charge station (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922012491
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:326:y:2022:i:c:s0306261922012491

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2022.119992

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:326:y:2022:i:c:s0306261922012491