EconPapers    
Economics at your fingertips  
 

Development of a probabilistic short-term voltage quality assessment method with the weak point detection capability through the dynamic analyses

Onder Polat and Omer Gul

Applied Energy, 2022, vol. 326, issue C, No S0306261922012600

Abstract: The proliferation of power electronics-based sources and equipment in low voltage to high voltage applications reshapes the dynamic behavior of power system networks, leading to certain voltage quality vulnerabilities for industrial customers and independent power producers. The root causes of most voltage quality problems are related to power system faults which may trigger voltage dips, voltage swells, and interruptions. In-depth stochastic modeling combined with advanced power system simulations and statistical validation is required to foresee the effects of these events on the network users. Therefore, a holistic method was proposed in this paper that utilizes reliability parameters in the context of the novel Monte Carlo-based fault creation approach. This method incorporates the input data from an extensive literature survey and real-life measurements. The probabilistic fault events are simulated in an environment where the protection system – dynamics interactions are considered. A modified IEEE test system was developed to introduce unconventional sources into the conventional test grid. A python script was developed to implement the algorithms into the power system analysis tool. Also, several voltage quality indices were introduced which are based on international standards. 30 Monte Carlo repetitions of a 5-year simulation period were performed (150 years Monte Carlo simulations), leading to a total number of 4410 fault cases for each network scenario. The results of the Monte-Carlo simulations were used to find the weak points of the network under five different operation and design scenarios with several statistical significance tests.

Keywords: Power quality; Voltage dips (sag); Voltage swells; Interruptions; Voltage quality; Monte Carlo; Inverter-based generation; Wind parks; Solar parks; Battery storage; STATCOM; Reliability; Power system dynamics; Power system protection; Stochastic faults (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922012600
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:326:y:2022:i:c:s0306261922012600

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2022.120003

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:326:y:2022:i:c:s0306261922012600