Development of a probabilistic short-term voltage quality assessment method with the weak point detection capability through the dynamic analyses
Onder Polat and
Omer Gul
Applied Energy, 2022, vol. 326, issue C, No S0306261922012600
Abstract:
The proliferation of power electronics-based sources and equipment in low voltage to high voltage applications reshapes the dynamic behavior of power system networks, leading to certain voltage quality vulnerabilities for industrial customers and independent power producers. The root causes of most voltage quality problems are related to power system faults which may trigger voltage dips, voltage swells, and interruptions. In-depth stochastic modeling combined with advanced power system simulations and statistical validation is required to foresee the effects of these events on the network users. Therefore, a holistic method was proposed in this paper that utilizes reliability parameters in the context of the novel Monte Carlo-based fault creation approach. This method incorporates the input data from an extensive literature survey and real-life measurements. The probabilistic fault events are simulated in an environment where the protection system – dynamics interactions are considered. A modified IEEE test system was developed to introduce unconventional sources into the conventional test grid. A python script was developed to implement the algorithms into the power system analysis tool. Also, several voltage quality indices were introduced which are based on international standards. 30 Monte Carlo repetitions of a 5-year simulation period were performed (150 years Monte Carlo simulations), leading to a total number of 4410 fault cases for each network scenario. The results of the Monte-Carlo simulations were used to find the weak points of the network under five different operation and design scenarios with several statistical significance tests.
Keywords: Power quality; Voltage dips (sag); Voltage swells; Interruptions; Voltage quality; Monte Carlo; Inverter-based generation; Wind parks; Solar parks; Battery storage; STATCOM; Reliability; Power system dynamics; Power system protection; Stochastic faults (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922012600
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:326:y:2022:i:c:s0306261922012600
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2022.120003
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().