Thermal-enhanced nanofluidic osmotic energy conversion with the interfacial photothermal method
X.F. Zhang,
X. Zhang,
Z.G. Qu,
J.Q. Pu and
Q. Wang
Applied Energy, 2022, vol. 326, issue C, No S0306261922012624
Abstract:
Nanofluidic osmotic energy conversion is widely considered a promising technology that converts sustainable salinity-gradient energy. Current studies on temperature regulation require extra electrical consumption to raise the solution temperature, causing the deterioration of the net power generation. In this study, a thermal-enhanced nanofluidic osmotic energy conversion with photothermal conversion structure (PCS-TOEC) integrated device is proposed to utilize sustainable solar energy as the heat source. This device is a reformation by adding photothermal conversion structure (PCS) into a salinity gradient utilization component. PCS is composed of a high solar-absorption cupric oxide film and a high thermal-conductive silicon carbide porous foam, and it can efficiently convert solar energy into solution heat. In addition, PCS can promote bulk heating at a high rate. The experiment shows that the solution temperature is raised from 25 ℃ to 68 ℃ after 240 min under one sun illumination, and the output power density achieves 8.6 W/m2 with 0.5 M/0.01 M NaCl solution, exhibiting a 188 % increase compared to that at room temperature. The increased bulk solution temperature under the photothermal effect can improve the ion diffusion coefficient and electrolyte convection, as well as reduce the electrolyte viscosity, resulting in the enhancement of the associated ion flux. The underlying mechanism of thermally enhanced osmotic power is primarily attributed to the elevated ion flux at increased bulk solution temperatures. Finally, the environmental adaptability of this device is verified over a wide range of concentration gradients (from 10-fold to 100-fold) and pH (from 4 to 10) conditions. In this work, a sustainable solution that enhances osmotic power generation is provided, and a novel method that achieves hybrid renewable energy cooperative utilization is developed.
Keywords: Photothermal conversion; Osmotic energy conversion; Nanochannel; Porous media (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922012624
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:326:y:2022:i:c:s0306261922012624
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2022.120005
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().