EconPapers    
Economics at your fingertips  
 

Investigation on performance of proton exchange membrane electrolyzer with different flow field structures

Rui Lin, Ying Lu, Ji Xu, Jiawei Huo and Xin Cai

Applied Energy, 2022, vol. 326, issue C, No S0306261922012685

Abstract: Proton exchange membrane (PEM) electrolysis provides a sustainable solution for hydrogen generation. As one of the key components, flow field should be properly designed to help distribute reactant evenly across the catalyzed reaction surface area. In this study, three-dimensional models of three flow field structures are built to simulate the internal flow velocity and pressure distribution. The electrolyzer performance of the flow fields at different operating temperature and water pressure is investigated through orthogonal experiments. The output characteristics and electrochemical behavior are investigated by measurement of polarization curves and analysis of electrochemical impedance. It is found that the flow field structure has the most considerable impact on the electrolyzer performance, followed by the operating temperature. The experimental results are consistent with the simulations, indicating that the parallel flow field has lower contact impedance and better mass transfer effect under medium and low current densities due to the large contact area of the channel and the uniform pressure distribution. PEM electrolyzer with the parallel flow field of channel width 1 mm, operating at 60 °C and 0.1 bar anode pressure has the best output performance. Under this condition, the electrolyzer’s potential reaches to 2.1 V at the current density of 1 A/cm2. This work can provide simulation and experimental support for the selection and optimization of PEM electrolyzers’ flow fields and operating conditions.

Keywords: PEM electrolyzer; Flow field structure; Operating parameters optimization; Simulation; Electrochemical analysis (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922012685
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:326:y:2022:i:c:s0306261922012685

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2022.120011

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:326:y:2022:i:c:s0306261922012685