A machine learning-based fatigue loads and power prediction method for wind turbines under yaw control
Ruiyang He,
Hongxing Yang,
Shilin Sun,
Lin Lu,
Haiying Sun and
Xiaoxia Gao
Applied Energy, 2022, vol. 326, issue C, No S0306261922012703
Abstract:
Yaw control is one of the most promising active wake control strategies to maximize the total power generation of wind farms. Meanwhile, structural performance needs to be considered in yaw misalignment in case the adverse structural performance offsets the benefit of yaw control in power enhancement. However, an efficient and accurate prediction method for fatigue loads under yaw control is still lacking. In this study, a machine learning-based prediction method is proposed to accurately estimate the fatigue loads and power of wind turbines under yaw control. Fatigue loads at critical turbine components and corresponding power yields are selected as outputs to reflect the performance of yawed wind turbines. Since most wind turbines (WTs) are sunk into the wake flow of their upstream counterparts, the wake effects are considered with the combination of active yaw control. Besides, the full range of inflow and yaw conditions are taken into account to ensure the accuracy and practicability of the proposed model. A machine learning algorithm, support vector regression (SVR), is tuned and trained to learn the relationships between outputs and inputs. The superiority of the proposed method is verified by comparing it with another machine learning-based model in several metrics. The results show that the proposed prediction method can return high regression coefficients and low deviation, proving its accuracy and robustness. Large yaw angles and high wind speeds are found to be beneficial for further improving the prediction accuracy. The proposed fatigue loads and power prediction method is expected to make contributions to the yaw optimization and therefore benefit the wind farms.
Keywords: Wind turbine; Active yaw control; Fatigue loads; Machine learning (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922012703
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:326:y:2022:i:c:s0306261922012703
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2022.120013
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().