Degradation characteristics investigation for lithium-ion cells with NCA cathode during overcharging
Lei Zhang,
Lvwei Huang,
Zhaosheng Zhang,
Zhenpo Wang and
David D. Dorrell
Applied Energy, 2022, vol. 327, issue C, No S0306261922012831
Abstract:
This paper explores the major degradation characteristics of commercial lithium-ion battery cells with nickel–cobalt-aluminum-oxide (NCA) electrode during cyclic overcharging, and proposes non-destructive methods for detecting overcharging degradation failure. The experimental results show that battery capacity drops significantly with increasing overcharge depth and number of cycles especially during the first three cycles and when the charging termination voltage is set to 5 V. At the same time, the cell overcharge tolerance decreases with the cyclic overcharging. The combination of the electrochemical impedance spectroscopy and the incremental capacity and differential voltage analysis is used to diagnose cell degradation during cyclic overcharging. Three main degradation modes are identified and quantified by extracting characteristic parameters such as internal resistance and peak, valley, and curve position changes of incremental capacity curves. It is concluded that loss of lithium inventory and loss of active materials are the most dominant degradation modes during cyclic overcharging. Besides, the sharp increase of the third peak on incremental capacity curves has been identified as a unique feature of overcharging degradation, which can be used for diagnosing cyclic overcharging-induced degradation for batteries with NCA cathode.
Keywords: Lithium-ion batteries; Safety; Overcharging; Fault diagnosis (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922012831
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:327:y:2022:i:c:s0306261922012831
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2022.120026
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().