EconPapers    
Economics at your fingertips  
 

Development and feasibility assessment of on-board catalytic reforming system for LPG engine to produce hydrogen in the transient state

Seungchul Woo and Kihyung Lee

Applied Energy, 2022, vol. 327, issue C, No S0306261922013101

Abstract: Despite tightening greenhouse gas regulations and the trend of electrification of power train, if hybrid systems are considered, internal combustion engines are expected to be used consistently. Therefore, research on low-emission engines that can be instantly applied should be continued. Liquefied petroleum gas is a low pollutant fuel applicable to spark ignition engines as an alternative fuel. In this study, to maximize the advantages of liquefied petroleum gas, a catalytic reforming system was applied to an internal combustion engine and tested under actual operating conditions. A catalytic reforming system is a technology that reforms a part of the fuel supplied to the engine through a reforming catalyst and supplies it to the intake manifold. When properly controlled, fuel efficiency and pollutant emissions can be improved. To effectively operate the system, the engine was controlled by dividing operating conditions into a general driving zone, a lean burn zone, and a catalytic reforming zone. finally, the fuel efficiency and NOx emissions were evaluated. As a result of the evaluation under the modified FTP-72 condition, NOx emission was reduced by 22.83%, and fuel efficiency was improved by 3.01%.

Keywords: Liquefied petroleum gas (LPG); On-board catalytic reforming; Adding hydrogen; Transient state; Control optimization (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922013101
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:327:y:2022:i:c:s0306261922013101

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2022.120053

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:327:y:2022:i:c:s0306261922013101