Optimal energy scheduling of grid-connected microgrids with demand side response considering uncertainty
Hui Hwang Goh,
Shuaiwei Shi,
Xue Liang,
Dongdong Zhang,
Wei Dai,
Hui Liu,
Shen Yuong Wong,
Tonni Agustiono Kurniawan,
Kai Chen Goh and
Chin Leei Cham
Applied Energy, 2022, vol. 327, issue C, No S0306261922013514
Abstract:
The benefits of more comprehensive energy use and promotion of renewable energy (RE) consumption enable large-scale microgrid deployment. However, the uncertainty of renewable energy sources and the diversity of load types pose a threat to the microgrid's stability. Recently, energy scheduling optimization for microgrids (MGs) has been primarily based on ideal models, but incorporating as many real-world characteristics as feasible can improve the reliability of the optimization outcome. This paper provides a multi-stage methodology for solving the energy management optimization (EMO) problem of MG under uncertainty considering carbon trading market and demand side response (DSR). To begin, scenario analysis method was used to address the uncertainty associated with RE in MG, and four typical scenarios of renewable energy were generated. Then, the flexible configuration and operational constraints of each power source in MG are dealt with under the premise of considering the carbon trading market. The third stage involved merging the characteristics of various load types and analyzing the response impacts of different percentage residential and industrial loads, respectively, using the price-based and load-transfer-based DSR approaches. Finally, quantum particle swarm optimization (QPSO) algorithm was used to obtain the optimal solution. The acquired results demonstrate the efficacy of the proposed multi-stage energy optimization framework, and support the following two conclusions: 1) The carbon trading market policy contributes to the reduction of carbon emissions and fossil fuel consumption. 2) A high load participation rate in DSR can increase MG operation economics by up to 27.48% compared to not considering DSR.
Keywords: Energy management optimization; Microgrid; Stochastic analysis; Renewable energy; Quantum particle swarm optimization (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922013514
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:327:y:2022:i:c:s0306261922013514
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2022.120094
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().