EconPapers    
Economics at your fingertips  
 

Flexibility and shape memory of phase change material capable of rapid electric heating function for wearable thermotherapy

Xuemin Lin, Ziye Ling, Xiaoming Fang and Zhengguo Zhang

Applied Energy, 2022, vol. 327, issue C, No S0306261922013988

Abstract: Thermotherapy is often preferable to medication and surgery because of its mild side effects and noninvasiveness. However, current research methods are unable to improve the efficiency of pre-treatment resulting in unportable use, and poor room temperature flexibility has become its critical limitation. Herein, a novel conductive flexible composite phase-change material (CPCM) was prepared for high-performance thermotherapy. Styrene ethylene butylene styrene (SEBS) and expanded graphite (EG) absorb paraffin (PA) and silicone oil onto a three-dimensional network. The CPCM possesses a high energy storage density (100.8–164.5 J/g) and sufficient volume conductivity (383.76 S·m−1) and can improve the thermal conductivity to 1600 % relative to pure PA. Moreover, it is flexible and possesses shape memory at both room temperature and the phase change temperature (44 ℃). The hardness of the material is 44.5 HA at room temperature and can be reduced to 2.0 HA after phase transition. When heated electrically, it heated threefold faster than when heated by hot air. The material was tested by volunteers and was found to maintain a temperature above 40 °C for more than 30 min. The utilization of this CPCM in thermotherapy is a promising low-cost and environmentally friendly strategy.

Keywords: Phase change materials; Thermotherapy; Latent heat; Flexibility (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922013988
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:327:y:2022:i:c:s0306261922013988

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2022.120141

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:327:y:2022:i:c:s0306261922013988