Very short-term residential load forecasting based on deep-autoformer
Yuqi Jiang,
Tianlu Gao,
Yuxin Dai,
Ruiqi Si,
Jun Hao,
Jun Zhang and
David Wenzhong Gao
Applied Energy, 2022, vol. 328, issue C, No S0306261922013770
Abstract:
Very short-term load forecasting (VSLTF) plays an essential role in guaranteeing effective electricity dispatching and generating in residential microgrid systems. However, the extreme fluctuations and irregular data patterns of VSTLF have brought severe challenges to accurate forecasting. Deep learning methods have been mostly utilized in time series predicting tasks like load forecasting. Recently, an Autoformer neural network has been proposed in many time series forecasting scenarios. Based on Autoformer, this paper proposes a new Deep-Autoformer framework, where the extra MLP layers are added to the basic Autoformer framework for a more efficient deep information extraction. Taking a microgrid system in Austin, Texas from the Pecan Street dataset as a case study, Deep-Autoformer and other five baseline models are utilized to forecast the load data of 15 min and one-hour time resolution. The main contributions of the proposed Deep-Autoformer are: (i)the experiment results indicate that the proposed Deep-Autoformer has achieved State-Of-The-Art (SOTA) results in both VSTLF and STLF, and(ii) the ‘deep’ method, where the MLP layers are added in the appropriate positions of the neural network, can contribute to more efficient feature extraction. Moreover, due to the unintuitive phenomenons in the experiment, two hypotheses are also proposed: (i) the long-ago historical data may affect the performance of the auto-correlation mechanism of the Autoformer, and (ii) models are probably overfitting the historical patterns if the time series data are too long. Overall, the proposed Deep-Autoformer can provide a feasible approach and a new baseline for the real application of VSTLF.
Keywords: Very short-term load forecasting; Deep-autoformer; Fluctuation forecasting accuracy index; Auto-correlation; Time series decomposition (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922013770
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:328:y:2022:i:c:s0306261922013770
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2022.120120
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().