Managing water-energy-carbon nexus in integrated regional water network planning through graph theory-based bi-level programming
Chen Chen,
Xiaodong Zhang,
Huayong Zhang,
Yanpeng Cai and
Shuguang Wang
Applied Energy, 2022, vol. 328, issue C, No S0306261922014350
Abstract:
The water-energy-carbon nexus (WECN) has raised the attentions in the past years due to the shortages of water and energy resources, climate change and their close connection. It is critical to study WECN in water network systems due to their energy- and carbon-intensive characteristics. In optimization of WECN in water network planning, decision makers with conflictive objectives may have different decision-making power levels. In this study, an integrated Graph Theory-Based Bi-Level Water Network Planning Model, named GraBiL is developed, which represents a methodological contribution to the challenge of quantitative interrelationships of WECN and hierarchical decision-making problem in regional-scale water network planning. The GraBiL model has improved upon the existing bi-level programming and graph theory-based method for solving spatial layout optimization in two-level decision-making problem. Two-level conflictive objectives including minimizing total system cost and maximizing energy saving are considered. Fuzzy uncertainties associated with water loads are quantified. The impacts of carbon emission control on total system economic costs, energy consumption and the optimal water network planning are effectively addressed. The results from a hypothetical case study indicate that enhanced overall satisfaction for meeting the two-level objectives can be achieved with the proposed GraBiL model. Optimal water network planning schemes including spatial layout under four representative carbon emission control scenarios are compared. The proposed model has provided insight into quantitative interrelationships of WECN, hierarchical decision-making, optimization of water network spatial layout and quantification of fuzzy uncertainty associated with water loads in regional-scale water network planning.
Keywords: Water-energy-carbon nexus; Water network planning; Graph theory; Bi-level programming; Optimization (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922014350
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:328:y:2022:i:c:s0306261922014350
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2022.120178
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().