Two-stage deep learning for online prediction of knee-point in Li-ion battery capacity degradation
Suyeon Sohn,
Ha-Eun Byun and
Jay H. Lee
Applied Energy, 2022, vol. 328, issue C, No S0306261922014611
Abstract:
Accurate monitoring of capacity degradation of a lithium-ion battery is important as it enables the user to manage the battery usage for optimal performance/lifetime and to take preemptive measures against any potential explosion or fire. Battery capacity fades gradually through repetitive charging and discharging until it reaches the so called ‘knee-point’, after which it goes through rapid and irreversible deterioration to reach its end-of-life. It is crucial to forecast the knee-point early and accurately for safety and economic use of the battery. Machine learning based methods have been used to predict the knee-point with early cycles cell data. Despite some notable progress made, the existing methods make the unrealistic assumption of constant cycle-to-cycle charge/discharge operation. In this study, a novel two-stage deep learning method is proposed for online knee-point prediction under variable battery usage. A CNN-based model extracts temporal features across past and current cycles to sort out those that should be monitored closely for near-term failures, and then predict the number of cycles left to reach the knee-point for them. The proposed method extracts features from time-series data and thus reflects dynamic changes in battery properties, resulting in improved prediction performance under realistic scenarios.
Keywords: Lithium-ion batteries; Knee-point; Convolutional neural networks; Feature extraction; Explainable artificial intelligence (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922014611
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:328:y:2022:i:c:s0306261922014611
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2022.120204
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().