EconPapers    
Economics at your fingertips  
 

Two-stage deep learning for online prediction of knee-point in Li-ion battery capacity degradation

Suyeon Sohn, Ha-Eun Byun and Jay H. Lee

Applied Energy, 2022, vol. 328, issue C, No S0306261922014611

Abstract: Accurate monitoring of capacity degradation of a lithium-ion battery is important as it enables the user to manage the battery usage for optimal performance/lifetime and to take preemptive measures against any potential explosion or fire. Battery capacity fades gradually through repetitive charging and discharging until it reaches the so called ‘knee-point’, after which it goes through rapid and irreversible deterioration to reach its end-of-life. It is crucial to forecast the knee-point early and accurately for safety and economic use of the battery. Machine learning based methods have been used to predict the knee-point with early cycles cell data. Despite some notable progress made, the existing methods make the unrealistic assumption of constant cycle-to-cycle charge/discharge operation. In this study, a novel two-stage deep learning method is proposed for online knee-point prediction under variable battery usage. A CNN-based model extracts temporal features across past and current cycles to sort out those that should be monitored closely for near-term failures, and then predict the number of cycles left to reach the knee-point for them. The proposed method extracts features from time-series data and thus reflects dynamic changes in battery properties, resulting in improved prediction performance under realistic scenarios.

Keywords: Lithium-ion batteries; Knee-point; Convolutional neural networks; Feature extraction; Explainable artificial intelligence (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922014611
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:328:y:2022:i:c:s0306261922014611

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2022.120204

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:328:y:2022:i:c:s0306261922014611