Reinforcement learning in deregulated energy market: A comprehensive review
Ziqing Zhu,
Ze Hu,
Ka Wing Chan,
Siqi Bu,
Bin Zhou and
Shiwei Xia
Applied Energy, 2023, vol. 329, issue C, No S0306261922014696
Abstract:
The increasing penetration of renewable generations, along with the deregulation and marketization of power industry, promotes the transformation of energy market operation paradigms. The optimal bidding strategy and dispatching methodologies under these new paradigms are prioritized concerns for both market participants and power system operators. In contrast with conventional solution methodologies, the Reinforcement Learning (RL), as an emerging machine learning technique that exhibits a more favorable computational performance, is playing an increasingly significant role in both academia and industry. This paper presents a comprehensive review of RL applications in deregulated energy market operation including bidding and dispatching strategy optimization, based on more than 150 carefully selected papers. For each application, apart from a paradigmatic summary of generalized methodology, in-depth discussions of applicability and obstacles while deploying RL techniques are also provided. Finally, some RL techniques that have great potentiality to be deployed in bidding and dispatching problems are recommended and discussed.
Keywords: Energy market; Reinforcement learning; Bidding strategy; Optimal dispatching (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922014696
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:329:y:2023:i:c:s0306261922014696
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2022.120212
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().