Fast capacity and internal resistance estimation method for second-life batteries from electric vehicles
Elisa Braco,
Idoia San Martín,
Pablo Sanchis and
Alfredo Ursúa
Applied Energy, 2023, vol. 329, issue C, No S0306261922014921
Abstract:
The success of second-life (SL) Li-ion batteries from electric vehicles is still conditioned by their technical and economic viability. The knowledge of the internal parameters of retired batteries at the repurposing stage is key to ensure their adequate operation and to enlarge SL lifetime. However, traditional characterization methods require long testing times and specific equipment, which result in high costs that may jeopardize the economic viability of SL. In the seek of optimizing the repurposing stage, this contribution proposes a novel fast characterization method that allows to estimate capacity and internal resistance at various state of charge for reused cells, modules and battery packs. Three estimation models are proposed. The first of them is based on measurements of AC resistance, the second on DC resistance and the third combines both resistance types. These models are validated in 506 cells, 203 modules and 3 battery packs from different Nissan Leaf vehicles. The results achieved are satisfactory, with mean absolute percentage errors (MAPE) below 2.5% at cell and module level in capacity prediction and lower than 2.4% in resistance estimation. Considering battery pack level, MAPE is below 4.2% and 1.8% in capacity and resistance estimation respectively. With the proposed method, testing times are reduced from more than one day to 2 min per cell, while energy consumption is lowered from 1.4 kWh to 1 Wh. In short, this study contributes to the reduction of repurposing procedures and costs, and ultimately to the success of SL batteries business model.
Keywords: Energy storage; Electric vehicle; Lithium-ion battery; Second-life battery; Characterization (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922014921
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:329:y:2023:i:c:s0306261922014921
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2022.120235
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().