Global sensitivity analysis and optimal design of heat recovery ventilation for zero emission buildings
Peng Liu,
Maria Justo Alonso and
Hans Martin Mathisen
Applied Energy, 2023, vol. 329, issue C, No S0306261922014945
Abstract:
Energy-efficient building services are necessary to realise zero-emission buildings while maintaining adequate indoor environmental quality. As the share of ventilation heating needs grow in well-insulated and airtight buildings, heat recovery in mechanical ventilation systems is increasingly common. Ventilation heat recovery is one of the most efficient and viable means to reduce ventilation heat losses and save energy. Highly efficient heat exchangers are being developed or applied to maximise the energy-saving potential of heat recovery ventilation. Nevertheless, the effects of practical operating conditions and the constraints of heat recovery – such as variations in ventilation rates, frost protection, and the prevention of an overheated air supply over a long-term period, which may significantly influence realistic recovery rates – have been less considered in efforts to maximise the energy savings. It is unclear which design parameters for heat recovery devices have the greatest effect on the annual energy savings from ventilation.
Keywords: Energy-efficient ventilation; Rotary heat exchanger; Global sensitivity analysis; Optimal design (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922014945
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:329:y:2023:i:c:s0306261922014945
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2022.120237
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().