EconPapers    
Economics at your fingertips  
 

Sustainable energy development technique of vertical axis wind turbine with variable swept area – An experimental investigation

Konrad Pietrykowski, Nanthagopal Kasianantham, Dineshkumar Ravi, Michał Jan Gęca, Prakash Ramakrishnan and Mirosław Wendeker

Applied Energy, 2023, vol. 329, issue C, No S0306261922015197

Abstract: The vertical axis wind turbine is one of the most attractive propulsion systems for sustainable energy generation around the globe. The performance of a vertical axis wind turbine is greatly dependent on wind speed, blade set angle and more importantly the rotational speed. The effective utilization of wind speed and rotational speed on power generation would be enhanced by the improvement of energy capturing capability. Therefore, an attempt has been made to develop the vertical axis wind turbine with a variable swept area of blades to enhance the torque and power output over a wide range of rotational speeds and set angles. In the first phase, the wind turbine is designed with flexibility in blade set angles through modification on the swept area and the developed wind turbine has been subjected to various wind speeds and rotational speeds in a wind tunnel. The experimental results revealed that the torque and power are increased with an increase in wind speed and rotational speeds under blade set angle of 30° to 120°. The peak torque and power have been attained at the average speed of the turbine and it has been eventually increased for a higher blade set angle. For constant set angle, the performance characteristics are also improved due to the enhancement in energy capturing ability of wind turbine at the variable swept area. Furthermore, torque and power coefficient are evident in a similar pattern at all wind speeds and rotational speeds under different tip speed ratios. The maximum torque coefficient would be around 0.3 for the tip speed ratio of 0.2–0.3 and the attainment of the peak value of power and torque coefficient has been shifted towards higher speed due to the improvement in blade dimensions. Thus, it is revealed that the vertical axis wind turbine with enhanced swept blade area would be an attractive propulsion system for sustainable energy generation.

Keywords: Vertical axis wind turbine; Swept area; Sustainable energy; Performance; Wind tunnel (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922015197
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:329:y:2023:i:c:s0306261922015197

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2022.120262

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:329:y:2023:i:c:s0306261922015197