EconPapers    
Economics at your fingertips  
 

Risk-embedded scheduling of a CCHP integrated with electric vehicle parking lot in a residential energy hub considering flexible thermal and electrical loads

Kasra Saberi-Beglar, Kazem Zare, Heresh Seyedi, Mousa Marzband and Sayyad Nojavan

Applied Energy, 2023, vol. 329, issue C, No S0306261922015227

Abstract: Climate change has detrimental impacts on the environment and sustainability, leading to employing alternative energy systems such as combined cooling, heat and power (CCHP). The concept of integrated energy systems (IES) allows the coordination of several components, such as electric vehicles (EV), to serve various demands simultaneously. This paper focuses on coordinating the CCHP and electric vehicle parking lot (EVPL) integrated with photovoltaic (PV) technology as renewable energy (RE). The residential energy hub (REH) is modeled to integrate these components to meet the demands and minimize REH’s operating costs and carbon emissions. EVPL functions as dynamic electrical storage besides serving EVs. Stochastic programming is used to model RE, EV, loads, and electricity price uncertainties. Demand response (DR) is applied for shiftable electrical loads. The thermodynamic model of heating and cooling loads is developed with flexibility as integrated demand response (IDR) based on the building’s desired temperature. The emission cost model with penalty factors enforces REH to use less-pollutant energy sources. Subsequently, a risk-aversion strategy, namely downside risk constraint (DRC), is implemented to diminish the associated risk as the consequence of uncertainties for the decision-maker. Different constraint level is applied to provide various conservative decision-making strategies for the operator. Summer and winter scenarios with and without DR and flexible thermal loads were used to evaluate the model’s accuracy. The scheduling problem is solved in IEEE 33-bus test system. The results reveal that the DR could reduce the operation cost by 5% in summer and 8% in winter. Moreover, zero risk for summer and winter is gained at the cost of 10.4% and 3.1% increment in operating costs.

Keywords: Combined cooling, heat and power; Residential energy hub; Electric vehicle parking lot; Demand response; Flexible thermal loads; Downside risk constraint (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922015227
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:329:y:2023:i:c:s0306261922015227

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2022.120265

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:329:y:2023:i:c:s0306261922015227