Fission battery markets and economic requirements
Charles Forsberg and
Andrew W. Foss
Applied Energy, 2023, vol. 329, issue C, No S0306261922015239
Abstract:
Fission Batteries (FBs) are nuclear reactors for customers with heat demands less than 250 MWt—replacing oil and natural gas in a low-carbon economy. Individual FBs would have outputs between 5 and 30 MWt. The small FB size has two major benefits: (1) the possibility of mass production and (2) ease of transport and leasing with return of used FBs to factory for refurbishing and reuse. Comparatively, these two features are lacking in larger conventional reactors. Larger reactors are not transportable and thus can’t obtain the manufacturing economics possible with mass production or the operational advantages of returning the FB to the factory after use. Leasing places the regulatory, maintenance and fuel-cycle burden on the leasing company that is minimized by large-fleet operations of identical units. The markets and economic requirements for FBs were examined. The primary existing markets are industrial, biofuels, off-grid electricity and container ships. Two major future markets were identified—advanced biofuels and hydrogen. In a low-carbon world, the competitive price range for heat is $20–50/MWh ($6–15/million BTU) and $70–115/MWh for non-grid electricity. The primary competition in these sectors is likely to be biofuels and hydrogen produced using alternative energy sources—grid electricity is non-competitive. Larger users of energy have alternative low-carbon energy choices including modular nuclear reactors and fossil fuels with carbon capture and sequestration (CCS).
Keywords: Fission Batteries; Heat; Markets; Low-carbon economy; Cogeneration; Biofuels (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922015239
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:329:y:2023:i:c:s0306261922015239
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2022.120266
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().