EconPapers    
Economics at your fingertips  
 

Electrolyzer cell-methanation/Sabatier reactors integration for power-to-gas energy storage: Thermo-economic analysis and multi-objective optimization

Mohammad Jalili, Shahriyar Ghazanfari Holagh, Ata Chitsaz, Jian Song and Christos N. Markides

Applied Energy, 2023, vol. 329, issue C, No S0306261922015252

Abstract: The main objective of this study is to compare and optimize two power-to-gas energy storage systems from a thermo-economic perspective. The first system is based on a solid oxide electrolyzer cell (SOEC) combined with a methanation reactor, and the second is based on a polymer electrolyte membrane electrolyzer cell (PEMEC) integrated into a Sabatier reactor. The first system relies on the co-electrolysis of steam and carbon dioxide followed by methanation, whereas the basis of the second system is hydrogen production and conversion into methane via a Sabatier reaction. The systems are also analyzed for being applied in different countries and being fed by different renewable and non- renewable power sources. Simulation results of both systems were compared with similar studies from the literature; the errors were negligible, acknowledging the reliability and accuracy of the simulations. The results reveal that for the same carbon dioxide availability (i.e., flow rate), the SOEC-based system has higher exergy and power-to-gas efficiencies, and lower electricity consumption compared to the PEMEC-based system. However, the PEMEC-based system produces 1.2 % more methane, also with a lower heating value (LHV) of the generated gas mixture that is 7.6 % higher than that of the SOEC-based system. Additionally, the levelized cost of energy (based on the LHV) of the SOEC-based system is found to be 11 % lower. A lifecycle analysis indicates that the lowest lifecycle cost is attained when solar PV systems are employed as the electricity supply option. Eventually, the SOEC-based system is found to be more attractive for power-to-gas purposes from a thermo-economic standpoint.

Keywords: Co-electrolysis; Energy storage; Fuel cell; Polymer electrolyte membrane electrolyzer cell; Power-to-gas; Solid oxide electrolyzer cell (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922015252
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:329:y:2023:i:c:s0306261922015252

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2022.120268

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:329:y:2023:i:c:s0306261922015252