Underwater noise reduction of offshore wind turbine using compact circular liner
Teng Zhou and
Jingwen Guo
Applied Energy, 2023, vol. 329, issue C, No S0306261922015288
Abstract:
A lined layer used for suppressing the underwater noise radiation from the offshore wind turbine is developed in this study. The lined layer is made from nitrile rubber. It contains periodically distributed axial cavities and each of which consists of a circular truncated cone and a cylinder. The acoustic performance of the lined layer is analysed using the equivalent medium method and the transfer matrix method. Based on the analytical prediction model, an optimal configuration targeting for low-frequency range is designed and its absorption coefficient under 2500Hz is up to 0.96. The finite element method is employed to examine effects of the lined layer on a scaled tower-water model. The presence of the lined layer can lower the sound pressure level by up to 18 dB. Since the sound speed in the lined layer is lower than that in water, the radiation angle of the sound wave front is smaller than that for the baseline model. Practically, this study puts an early effort on underwater noise control of the offshore wind turbine and proposes a feasible solution for that.
Keywords: Offshore wind turbine; Underwater noise reduction; Liner (search for similar items in EconPapers)
Date: 2023
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922015288
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:329:y:2023:i:c:s0306261922015288
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2022.120271
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().