EconPapers    
Economics at your fingertips  
 

Intrusive and non-intrusive early warning systems for thermal discomfort by analysis of body surface temperature

Ziyang Wang, Ryuji Matsuhashi and Hiroshi Onodera

Applied Energy, 2023, vol. 329, issue C, No S0306261922015409

Abstract: Buildings consume huge amounts of energy for the thermal comfort maintenance of the occupants. Real-time thermal comfort assessment is both important in the occupants’ thermal comfort optimization and energy conservation in the building sector. Existing thermal comfort studies mainly focus on the real-time assessment of the occupant’s current thermal comfort. Nonetheless, in the transient thermal environment, the occupant’s current thermal comfort is not steady and changes moment by moment. Hence, a prediction error will be elicited if we merely assess the occupant’s current thermal comfort. To address this problem, it is crucial to comprehend the occupant’s real-time thermal sensation trend in the transient thermal environment. A novel thermal sensation index that directly accounts for an occupant’s current thermal sensation trend is investigated in this study. By integrating the novel thermal sensation index into an ordinary thermal comfort model, a novel composite thermal comfort model is derived, which can simultaneously address the occupant’s current thermal comfort and current thermal sensation trend. Next, by utilizing machine learning classifications, we propose the intrusive and non-intrusive assessment methods of the composite thermal comfort model by analysis of the skin/clothing temperatures of ten local body parts measured by thermocouple thermometers and upper body thermal images measured by a low-cost portable infrared camera. The intrusive method reached a mean accuracy of 59.7% and 52.0% in Scenarios I and II, respectively; the non-intrusive method reached a mean accuracy of 45.3% and 42.7% in Scenarios I and II, respectively. The composite thermal comfort model provides a thermal discomfort early warning mechanism and contributes to energy conservation in the building sector.

Keywords: Thermal comfort; Energy conservation; Relative thermal sensation; Physiological index; Infrared thermography; Machine learning (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922015409
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:329:y:2023:i:c:s0306261922015409

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2022.120283

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:329:y:2023:i:c:s0306261922015409