EconPapers    
Economics at your fingertips  
 

A proactive 2-stage indoor CO2-based demand-controlled ventilation method considering control performance and energy efficiency

Chunxiao Li, Can Cui and Ming Li

Applied Energy, 2023, vol. 329, issue C, No S0306261922015458

Abstract: This paper presents a novel method, named proactive 2-stage demand-controlled ventilation (P2S-DCV) method, to maintain indoor air quality (IAQ) and reduce the energy consumption of multi-zone ventilation systems. The proposed P2S-DCV method applies a proactive control scheme, which predicts future indoor CO2 concentration and supplies proper ventilation to each zone. The method includes two stages. In Stage I, a DNN prediction model is established to predict the future CO2 concentration to calculate the corresponding demand airflow. In Stage II, a reinforcement learning method is designed to achieve rapid and accurate control, and further reduce the energy consumption by optimizing the fan pressure and damper positions. A 5-zone ventilation system is established to validate the proposed P2S-DCV method. The experiment verifies that: a) it can maintain comfortable IAQ via predicting the change of future indoor CO2 and applying effective ventilation control in advance; b) it can improve the control performance, the accuracy is maintained within 8 % (satisfied the ASHRAE Standards), and the control time is maintained within minutes. It can reduce the regulating time by 83.62 % compared with ASHRAE Ratio method, and up to 51.68 % compared with PID method; c) it can reduce the fan energy consumption by 16.4 % compared with ASHRAE Ratio method, and up to 21.8 % compared with PID method; d) it has good generalization ability for various IAQ requirements and ventilation systems with different topologies.

Keywords: Proactive 2-stage demand-controlled ventilation; Multi-zone ventilation systems; Indoor air quality; Energy efficiency; Predicted indoor CO2; Reinforcement learning (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922015458
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:329:y:2023:i:c:s0306261922015458

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2022.120288

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:329:y:2023:i:c:s0306261922015458