State of health estimation of lithium-ion batteries with a temporal convolutional neural network using partial load profiles
Steffen Bockrath,
Vincent Lorentz and
Marco Pruckner
Applied Energy, 2023, vol. 329, issue C, No S0306261922015641
Abstract:
An accurate aging forecasting and state of health estimation is essential for a safe and economically valuable usage of lithium-ion batteries. However, the non-linear aging of lithium-ion batteries is dependent on various operating and environmental conditions wherefore the degradation estimation is a complex challenge. Moreover, for on-board estimations where only limited memory and computing power are available, a state of health estimation algorithm is needed that is able to process raw sensor data without complex preprocessing. This paper presents a data-driven state of health estimation algorithm for lithium-ion batteries using different segments of partial discharge profiles. Raw sensor data is directly input to a temporal convolutional neural network without the need of executing feature engineering steps. The neural network is able to process raw sensor data and estimate the state of health of battery cells for different aging and degradation scenarios. After executing Bayesian hyperparameter tuning together with a stratified cross validation approach for splitting the training and test data, the achieved generalized aging model estimates the state of health with an overall root mean squared error of 1.0%.
Keywords: Lithium-ion battery; State of health estimation; Deep learning; Temporal convolutional network (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922015641
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:329:y:2023:i:c:s0306261922015641
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2022.120307
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().