Rail train operation energy-saving optimization based on improved brute-force search
Zongyi Xing,
Zhenyu Zhang,
Jian Guo,
Yong Qin and
Limin Jia
Applied Energy, 2023, vol. 330, issue PA, No S0306261922016026
Abstract:
Rail train operation energy consumption mainly focuses on train traction energy consumption. Reducing train traction energy consumption in rail transit operation is significant to developing a green and low-carbon economy and reducing operation costs. The rail train operation energy-saving optimization framework is developed considering the utilization of regenerative braking energy. Firstly, three objectives of punctual arrival, fixed-point parking and minimum energy consumption are provided by train operation strategy analysis. Secondly, the improved brute-force search is developed to solve train operation energy-saving multi-objective problems. The running time, speed, distance, power, and energy consumption of operation intervals are calculated. Finally, Guangzhou Metro Line 7 is taken as an example to verify the effectiveness of the developed optimization model. The results show that the improved brute-force search method effectively finds a more energy-saving turning point under constant interval operation time and has a better energy-saving effect than two other heuristic algorithms.
Keywords: Metro train; Energy saving optimization; Brute-force search; Speed curve (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922016026
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:330:y:2023:i:pa:s0306261922016026
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2022.120345
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().