Methanol steam reforming reactor with fractal tree-shaped structures for photovoltaic–thermochemical hybrid power generation
Kai Zhao,
Zhenyu Tian,
Jinrui Zhang,
Buchu Lu and
Yong Hao
Applied Energy, 2023, vol. 330, issue PB, No S0306261922014775
Abstract:
The photovoltaic–thermochemical (PVTC) hybrid system converts thermal energy dissipated by concentrating photovoltaic cells to gain in power generation via the endothermic methanol steam reforming (MSR) reaction. Conventional MSR reactors are challenged by undesirable performances in heat transfer and methanol conversion, impacting the performances of power generation and energy storage of PVTC systems. In this work, an innovative fractal tree-shaped structure is introduced into the flow channels configuration of an MSR reactor to enhance heat transfer performance and methanol conversion. The methanol conversion of the novel reactor is experimentally assessed, which is 12.1 percentage points (relative improvement of 26.5%) higher than that of conventional reactors with serpentine flow channels design. A 3-D multiphysics model of the MSR reactors coupling heat transfer, gas flow, and chemical reaction is developed to reveal the mechanism of methanol conversion improvement. The fractal tree-shaped structure can improve the net solar-electric efficiency of the photovoltaic–thermochemical hybrid system by 5.6–7.5% (up to 36.6%). The efficient solar energy power generation of the PVTC system with energy storage ratio ensures considerable dispatchability for hybrid solar power generation.
Keywords: Fractal tree-shaped structure; Methanol steam reforming (MSR); Solar thermochemistry; Concentrating photovoltaic cell; Efficiency (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922014775
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:330:y:2023:i:pb:s0306261922014775
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2022.120220
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().