Modelling pavement photovoltaic arrays with cellular automata
Mingxuan Mao,
Siyu Chen and
Jinyue Yan
Applied Energy, 2023, vol. 330, issue PB, No S0306261922016178
Abstract:
This paper proposes a dynamic modelling of two-lane pavement photovoltaic (PV) arrays based on cellular automata theory, and the influence of random vehicle shadows on the output characteristics is explored and analysed. In the proposed model, a mathematical model of two-lane pavement PV array is established with considering the influence of bypass diodes and blocking diodes. In order to characterize the change of irradiation intensity caused by vehicle shadow, an asymmetric two-lane Nagel-Scheckenberg (ATNS) model is introduced in the driving process of vehicles. Moreover, the vehicle position at each time is obtained to further establish the randomly changing vehicle shadow matrix. The actual irradiance matrix can be obtained by combining vehicle shadow matrix with the irradiance matrix related to the external environment, and then a dynamic model of two-lane pavement PV arrays is established. To evaluate the effectiveness of the proposed model, the influence of the slowing probability and shading degree on the proposed model is analysed, where three representative scenarios are set to study the randomness of vehicle shading and its effects. Finally, simulations and experiments are conducted and the results show that the slowing probability and shading degree are the key two factors on the output characteristics of two-lane pavement PV arrays, and the dynamic random vehicle shadows significantly affect the output characteristics, resulting in a changing multi-peak state of the power-voltage curve and the global maximum power point being in a floating fast-changing state.
Keywords: Pavement PV arrays; Cellular automata; Dynamic random vehicle shading; Output characteristics (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922016178
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:330:y:2023:i:pb:s0306261922016178
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2022.120360
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().