EconPapers    
Economics at your fingertips  
 

Hybrid PCM-steam thermal energy storage for industrial processes – Link between thermal phenomena and techno-economic performance through dynamic modelling

Pouriya H Niknam and Adriano Sciacovelli

Applied Energy, 2023, vol. 331, issue C, No S0306261922016154

Abstract: This study aims to assess the performance and economics of novel hybrid thermal energy storage (HyTES) for industrial applications, linking performance to thermal phenomena occurring within the system. The storage hybridisation concept is based on coupling latent heat storage modules containing high-temperature Phase Change Materials (PCMs) with a fast-response steam accumulator. Such hybrid storage, where heat is stored in both forms of steam and latent heat of PCMs, has the potential to capture excess heat produced by the steam generator of any industrial processes, which can then be used at peak times. HyTES performance is dynamically modelled during charging, idle, and discharging stages. The results show that the HyTES provides 14% extra energy storage capacity than the existing steam accumulator within an identical total volume. Furthermore, the study provides technical analysis of HyTES, and thorough comparison between configurations with different PCM volumes, PCM types and charging times. This is essential to ultimately quantify the whole range of benefit of hybrid energy storage. The sensitivity analysis reveals that Incorporating the HyTES significantly improves energy capacity, and the degree of improvement is mainly affected by the charge duration, approximately 15% after 1 h, and 45% after 4 h of charging. Furthermore, it is shown how the PCM properties affect the performance of HyTES. Finally, the CAPEX and O&M cost of the entire system are assessed in different scenarios and found to be 5% less when HyTES replaces the conventional SA.

Keywords: Thermal energy storage; Hybridisation; Phase change materials (PCM); Steam accumulator; Industry; Efficiency (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922016154
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:331:y:2023:i:c:s0306261922016154

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2022.120358

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:331:y:2023:i:c:s0306261922016154