A clean strategy of concrete curing in cold climate: Solar thermal energy storage based on phase change material
Kunyang Yu,
Minjie Jia,
Yingzi Yang and
Yushi Liu
Applied Energy, 2023, vol. 331, issue C, No S0306261922016324
Abstract:
In this paper, a novel strategy of concrete curing was developed by solar thermal energy storage based on phase change material (PCM), in order to prevent concrete from frost damage at early age and promote the rapid growth of concrete strength in cold climate. This method utilized huge latent heat of thermal energy storage layer (TESL) containing PCM to achieve continuous curing of concrete at positive temperature, and transparent insulation layer (TIL) was set outside so that TESL can fully absorb a large amount of thermal energy through solar radiation to complete repeated phase transition between day and night. Moreover, a numerical method was proposed to guide the reasonable design of TESL under different climatic conditions and it turned out that the optimum thickness of TESL ranged from 0.87 cm to 4.86 cm. Experiment results indicated that concrete specimen cured by the novel curing strategy achieved an excellent curing temperature history and it took only 60 h to reach the design strength. In addition, economic evaluation results suggested low cost, prominent energy saving and emission reduction performance of the proposed curing method in the whole service cycle. This work provided new insights into an efficient and clean solution to achieving the rapid construction of concrete engineering in cold climate.
Keywords: Concrete curing; Solar thermal energy storage; Phase change material; Clean; Rapid construction (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922016324
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:331:y:2023:i:c:s0306261922016324
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2022.120375
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().