EconPapers    
Economics at your fingertips  
 

Federated fuzzy k-means for privacy-preserving behavior analysis in smart grids

Yi Wang, Jiahao Ma, Ning Gao, Qingsong Wen, Liang Sun and Hongye Guo

Applied Energy, 2023, vol. 331, issue C, No S0306261922016531

Abstract: Better understanding the behavior of various participants in smart grids, such as electricity consumers and generators, is important and beneficial for flexibility exploration and renewable energy accommodation. Clustering, as an effective data-driven approach to behavior analysis, has been widely applied for extracting the typical electricity consumption behavior of consumers and the bidding behavior of generators in smart grids. Traditionally, the clustering algorithms are implemented centrally with the assumption that data from all consumers or generators can be accessed. However, it may not be the case in the real world because the consumers and generators may not be able to or willing to share their own data due to privacy concerns or commercial competition. To address this issue, in this paper, we propose a federated fuzzy k-means method for privacy-preserving behavior analysis in smart grids. Specifically, two learning strategies, i.e., model averaging and gradient averaging, are designed for the implementation of the federated fuzzy k-means clustering. Both methods are investigated and comprehensively compared on both the electricity consumption behavior dataset and the generator bidding behavior dataset. Experimental results show that our proposed methods achieve similar performance to the traditional centralized fuzzy clustering method on independent and identically distributed (i.i.d.) data, as well as protecting the privacy of different participants in smart grids. As for non-i.i.d., the performance of the model averaging-based method worsen; in contrast, the gradient averaging-based method is more robust to this situation.

Keywords: Federated learning; Behavior analysis; Smart meter data; Fuzzy k-means; Privacy-preserving (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922016531
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:331:y:2023:i:c:s0306261922016531

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2022.120396

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:331:y:2023:i:c:s0306261922016531