Techno-economic analysis of a novel solar-driven PEMEC-SOFC-based multi-generation system coupled parabolic trough photovoltaic thermal collector and thermal energy storage
Nan Zheng,
Hanfei Zhang,
Liqiang Duan,
Qiushi Wang,
Aldo Bischi and
Umberto Desideri
Applied Energy, 2023, vol. 331, issue C, No S0306261922016579
Abstract:
The present study proposes a novel multi-generation system with a solar-driven proton exchange membrane electrolysis cell, and a solid-oxide fuel cell coupled with a parabolic trough photovoltaic thermal collector and thermal energy storage. Surplus solar electricity is stored as high-pressure green hydrogen, and then a hydrogen-fueled solid-oxide fuel cell is employed to meet the electricity demand at night. The solar heat and other waste heat are stored in a thermal energy storage unit and then utilized to produce cooling/heating and domestic hot water. Multicriteria analyses of thermodynamic and economic performances are conducted to evaluate the techno-economic feasibility of the system, and the characteristics under variable operating conditions are also investigated. The results illustrate that the energy efficiency and exergy efficiency of the parabolic trough photovoltaic thermal collector may reach 80.7 % and 33.8 %, respectively, and the solar electricity of the parabolic trough photovoltaic thermal collector is continuously supplied to the user for 14 h and 9 h under typical cooling mode and heating mode, respectively. The net present value, simple payback period, and dynamic payback period reach 45.78 M$, 9.11 years, and 11.55 years, respectively. The internal rate of return of 9.96 % is higher than the interest rate by 4.96 percentage points, and the levelized cost of the product of the proposed hybrid system of 0.0540 $/kWh shows the excellent economic superiority.
Keywords: Techno-economic analysis; Proton exchange membrane electrolysis cell; Parabolic trough photovoltaic thermal collector; Solid oxide fuel cell; Thermal energy storage; Multi-generation system (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922016579
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:331:y:2023:i:c:s0306261922016579
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2022.120400
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().