EconPapers    
Economics at your fingertips  
 

Optimal operating scheme of neighborhood energy storage communities to improve power grid performance in smart cities

Fernando V. Cerna, Mahdi Pourakbari-Kasmaei, Raone G. Barros, Ehsan Naderi, Matti Lehtonen and Javier Contreras

Applied Energy, 2023, vol. 331, issue C, No S0306261922016683

Abstract: In Smart Cities (SC), the efficient management of services such as health, transport, public safety, and especially the electricity ensures the welfare of citizens. In recent years, the insertion of renewable sources (RSs) (e.g., solar and wind) in the power grid (PG) of SCs has contributed to meeting the electricity needs of the various consumer units. However, the large-scale integration of these RSs can fatigue the assets, leading to their premature aging and, consequently, compromising the quality of electricity supply. To overcome these challenges, the implementation of Neighboring Energy Storage Communities (NESCs) employing demand response (DR) strategies along with efficient coordination of storage batteries (SBs) could be a promising alternative. In this sense, the present work proposes a mixed-integer linear programming (MILP) model to efficiently manage SBs and the set of household appliances, including charging electric vehicles (EVs), in an NESC provided solely by PG. The proposed model aims to minimize: the total costs related to energy consumption, the peak rebound effect on the total consumption profile, energy wastage through load factor (LF) improvement, and the deep discharges in the SBs during their daily operational cycle. Operational constraints related to the home appliances, such as average usage time, the number of times that the appliance is used daily, etc., are taking into account. The EV state-of-charge (SOC), EV charging rate limits, and initial and final SOC of the SBs, are also considered. A Monte Carlo Algorithm (MCA) is used to simulate the habitual consumption patterns of each customer. The proposed model was implemented in AMPL and solved using CPLEX. The performance of this proposed model is evaluated considering two NESCs differentiated by the number of consumer communities. A first NESC (small-scale) is analyzed considering only two consumer communities. In this NESC, two case studies (Case 1 and 2) are discussed. Next, the second NESC (large-scale) that considers 14 consumer communities is analyzed for the most complete case study (Case 2). Within each NESC, consumer communities are differentiated by the household income and the types of SBs (individual and shared) that support each community. The results corroborate the applicability of the MILP model to real case studies on a diverse scale, guaranteeing the efficient use of PG at the same time that each SB seeks the most optimized operation.

Keywords: Demand response; Home appliances; Mixed-integer linear programming; Neighborhood energy storage communities; Storage batteries; Smart cities (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922016683
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:331:y:2023:i:c:s0306261922016683

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2022.120411

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:331:y:2023:i:c:s0306261922016683