PID-based CNN-LSTM for accuracy-boosted virtual sensor in battery thermal management system
Jiahang Xie,
Rufan Yang,
Hoay Beng Gooi and
Hung Dinh Nguyen
Applied Energy, 2023, vol. 331, issue C, No S0306261922016816
Abstract:
Battery thermal management is essential to achieve good performance and a long battery system lifespan in electric vehicles and stationary applications. Such a thermal management system is dependent on temperature monitoring, which is frequently hampered by the limited sensor measurements. The virtual sensor is brought forward to overcome this physical restriction and provide broader access to the battery’s temperature distribution. Through leveraging the combined convolutional neural network (CNN) and long short-term memory (LSTM) networks to extract both spatial and temporal information from the data, this paper proposes a novel virtual sensing platform. A PID compensator is included to offer auxiliary correction to the inputs and drive the prediction error to zero over time in a feedback loop. Off-line and online modes of this CNN-LSTM virtual sensor are considered. The network, which is trained off-line, will work with the PID compensator in the online mode with real-time sensor data. With the PID-based accuracy-boosted virtual sensor, the performance of the trained CNN-LSTM prediction on real-time data inputs is improved. Besides, this PID compensator reduces the number of hyper-parameters to be tuned. Based on control theory, the design of PID and its analysis are presented as well. With generated battery thermal data, numerical simulations show that the CNN-LSTM-PID virtual sensing framework can achieve the real-time prediction error reduction rate to 35.52% on average with 18.78% less online calculation time.
Keywords: Virtual sensor; PID; Convolutional Neural Network–Long Short-Term Memory networks; Battery energy storage system; Tree-structured parzen estimator; Compressed sensing (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922016816
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:331:y:2023:i:c:s0306261922016816
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2022.120424
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().