Distributionally robust optimization for peer-to-peer energy trading considering data-driven ambiguity sets
Xihai Zhang,
Shaoyun Ge,
Hong Liu,
Yue Zhou,
Xingtang He and
Zhengyang Xu
Applied Energy, 2023, vol. 331, issue C, No S0306261922016932
Abstract:
Peer-to-peer (P2P) energy trading provides potential economic benefits to prosumers. The prosumers are responsible for managing their own resources/reserves within the energy community, especially for photovoltaic (PV). However, the intermittency of PV leaves a major issue for the optimal operation of P2P energy trading. This paper proposes a fully data-driven distributionally robust optimization (DRO) for P2P energy trading. Specifically, both the optimization approach and the ambiguity set of DRO are formed in a data-driven fashion. The proposed formulation minimizes the expected operation cost of each prosumer, which is modeled as a DRO problem considering the operational constraints. A decentralized energy negotiation mechanism and market clearing algorithm are proposed for P2P energy trading based on the alternating direction multiplier method. Furthermore, the ambiguity set is formed by deep Gaussian process under the framework of bootstrap aggregating. Finally, the equivalent linear programming reformulations of the proposed DRO model are carried out and solved in a distributed manner. Numerical results demonstrate that the proposed DRO-based approach has superior performance for handling the randomness of PV generation compared with robust optimization, stochastic programming, and other DRO variants.
Keywords: Distributionally robust optimization; Deep Gaussian process; Data-driven ambiguity sets; Peer-to-peer energy trading (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922016932
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:331:y:2023:i:c:s0306261922016932
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2022.120436
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().