EconPapers    
Economics at your fingertips  
 

The ecological potential of manure utilisation in small-scale biogas plants

Lea Eggemann, Florian Rau and Detlef Stolten

Applied Energy, 2023, vol. 331, issue C, No S0306261922017020

Abstract: The main sources of greenhouse gas emissions, accelerating global climate change, are heat and electricity generation. To lower these emissions, an expansion of renewable energy usage is required. Biogas plants, a flexible renewable power source, are one possibility, and are already widely established in the European energy system. This study focuses on the utilisation of raw manure in closed systems to reduce direct CO2eq. emissions. It is the first to compare manure treatment in different types of small-scale biogas applications and under the impact of increasing temperatures resulting from climate change. The environmental impact in terms of four impact categories is evaluated by means of a life cycle assessment. Two cases are investigated: a biogas plant with either subsequent combustion in a combined heat and power plant or the direct usage of biogas as a simplified and less expensive application. The analysis shows that the first case yields –173 kgCO2eq. per m3 of manure, whereas the simplified one causes 20.9 kgCO2eq. per m3 of manure. If the first case is scaled with the currently existing number of small-manure plants in Germany, emissions of 464 mil. t CO2 eq. are mitigated per year. With increasing average annual temperatures, higher manure credits are generated and so the emissions of both plant options are reduced to –264and –69.5 kgCO2 eq. per m3 of manure, respectively, ascribing the direct biogas usage reductions of GHG emissions. Consequently, both systems have the potential for reducing emissions due to improved manure management and can contribute to mitigating climate change.

Keywords: Life cycle assessment; Improved manure management; Manure credit; Environmental impact; Co-product credit; Negative emissions (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922017020
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:331:y:2023:i:c:s0306261922017020

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2022.120445

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:331:y:2023:i:c:s0306261922017020