EconPapers    
Economics at your fingertips  
 

Severity-based fault diagnostic method for polymer electrolyte membrane fuel cell systems

Jin Young Park, In Seop Lim, Yeong Ho Lee, Won-Yong Lee, Hwanyeong Oh and Min Soo Kim

Applied Energy, 2023, vol. 332, issue C, No S0306261922017433

Abstract: This research suggests a severity-based multi-stage fault diagnostic method for polymer electrolyte membrane fuel cell systems. By separating the diagnostic stage depending on the fault severity, robustness and sensitivity of the diagnosis algorithm on each stage can be designed with flexibility. The details of the fault diagnosis algorithm development process are described and validated with fault experimental data using a 1 kW class fuel cell system. First, a nominal model is developed to generate a residual between the predicted normal state and the observed state. Second, expected fault responses of the system are organized in the form of residual patterns. These residual patterns are used for training neural networks that diagnose critical faults, significant faults, and minor faults. Third, the generated residuals are standardized and moving averaged to be used as inputs for the neural networks at each stage. Lastly, diagnosis results from the neural network-based algorithm are compared with the fault experimental data. As a result, 17 different faults are all successfully diagnosed. More specifically, five critical faults, seven significant faults, and 13 minor faults are diagnosed. In addition, a diagnosis method for multi-faults is suggested. Double faults and triple faults are experimentally simulated and diagnosed with the diagnosis algorithm.

Keywords: Polymer electrolyte membrane fuel cell; Balance of plant; Fault diagnosis; Residual; Health management (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922017433
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:332:y:2023:i:c:s0306261922017433

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2022.120486

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:332:y:2023:i:c:s0306261922017433