EconPapers    
Economics at your fingertips  
 

Full-scale fire testing of battery electric vehicles

Sungwook Kang, Minjae Kwon, Joung Yoon Choi and Sengkwan Choi

Applied Energy, 2023, vol. 332, issue C, No S0306261922017548

Abstract: The market share of electric vehicles, powered by lithium-ion batteries (LIB), has been expanding worldwide with the global momentum towards green technology and improving the driving range on one full-charge. Studies are, however, still required on the fire safety of the latest but unmatured technology due to a distinctive phenomenon called thermal runaway. In this study, a series of full-scale fire experiments were conducted, focusing on the understanding of thermal behaviours of battery electric vehicle (BEV) fires. To provide up-to-date information on BEV fires, the latest BEV model with a high electric-energy capacity (64 kWh) was selected. For comparative analysis purposes, a LIB pack and a BEV body were tested individually after being physically disassembled. An internal combustion engine vehicle and a hydrogen fuel cell electric vehicle were also tested. During testing, the combustion of the BEV fires continued for approximately 70 min, resulting in critical measures of burning being determined; peak heat release rate (pHRR), total heat released (THR), fire growth parameter, and the average effective heat of combustion were measured to be 6.51–7.25 MW, 8.45–9.03 GJ, 0.0085–0.020, and 29.8–30.5 MJ/kg, respectively. It was also observed that the pHRR and THR were governed by the combustion characteristics of typical combustible materials in the passenger cabin, rather than by that of particular contents in the LIB pack with thermal runaway. Instead, a jet fire intensively discharging from the LIB pack led to a rapid flame spreading to adjacent combustible components of the BEV, thereby accelerating the fire growth. The findings could contribute to the activities of the first responders to BEV fire accidents, fire safety engineers, and structural member designers. This study also makes public the measured thermal quantities for further studies on the fire safety of existing or designing car-parking related structures.

Keywords: Battery electric vehicle; Thermal runaway; Lithium-ion battery; Full-scale fire testing; Thermal behaviour (search for similar items in EconPapers)
Date: 2023
References: View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922017548
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:332:y:2023:i:c:s0306261922017548

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2022.120497

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:332:y:2023:i:c:s0306261922017548