Multi-agent hierarchical reinforcement learning for energy management
Imen Jendoubi and
François Bouffard
Applied Energy, 2023, vol. 332, issue C, No S0306261922017573
Abstract:
The increasingly complex energy systems are turning the attention towards model-free control approaches such as reinforcement learning (RL). This work proposes novel RL-based energy management approaches for scheduling the operation of controllable devices within an electric network. The proposed approaches provide a tool for efficiently solving multi-dimensional, multi-objective and partially observable power system problems. The novelty in this work is threefold: We implement a hierarchical RL-based control strategy to solve a typical energy scheduling problem. Second, multi-agent reinforcement learning (MARL) is put forward to efficiently coordinate different units with no communication burden. Third, a control strategy that merges hierarchical RL and MARL theory is proposed for a robust control framework that can handle complex power system problems. A comparative performance evaluation of various RL-based and model-based control approaches is also presented. Experimental results of three typical energy dispatch scenarios show the effectiveness of the proposed control framework.
Keywords: Eco-neighborhood; Energy management; Hierarchical reinforcement learning; Microgrid; Multi-agent reinforcement learning; Options’ framework (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922017573
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:332:y:2023:i:c:s0306261922017573
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2022.120500
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().