EconPapers    
Economics at your fingertips  
 

Weighted fully-connected regression networks for one-day-ahead hourly photovoltaic power forecasting

Linfei Yin, Xinghui Cao and Dongduan Liu

Applied Energy, 2023, vol. 332, issue C, No S0306261922017846

Abstract: Accurate photovoltaic power forecasting can provide a basis for low-carbon economic dispatch of power systems with a high proportion of renewable energy. Regression networks with many times training based on multi-group multi-configuration still cannot resist the randomness of training processes, resulting in the accuracy of photovoltaic power prediction needs to be improved. This work proposes a weighted fully-connected regression network, including a feature input layer, deep fully-connected layers, particle swarm optimization, and a regression output layer. The proposed model automatically selects two networks from multi-group multi-configuration well-trained regression networks to effectively reduce photovoltaic power prediction errors without additional sensors and data sources. The errors of these two chosen well-trained networks exactly neutralize each other by fixed and simple weights. The results under the one-day-ahead hourly photovoltaic power forecasting of Natal of Brazil show that the proposed method can reduce photovoltaic power prediction errors with at least 75.9954% smaller mean absolute error than the state-of-art methods and 68.2937% than other 18 famous convolutional neural networks methods.

Keywords: Weighted fully-connected regression networks; Photovoltaic power forecasting; One-day-ahead hourly; Fully-connected layer; Convolutional neural networks methods (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922017846
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:332:y:2023:i:c:s0306261922017846

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2022.120527

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:332:y:2023:i:c:s0306261922017846