EconPapers    
Economics at your fingertips  
 

Cooperative energy management and eco-driving of plug-in hybrid electric vehicle via multi-agent reinforcement learning

Yong Wang, Yuankai Wu, Yingjuan Tang, Qin Li and Hongwen He

Applied Energy, 2023, vol. 332, issue C, No S0306261922018207

Abstract: The advanced cruise control system has expanded the energy-saving potential of the hybrid electric vehicle (HEV). Despite this, most energy-saving researches for HEV either only optimize the energy management strategy (EMS) or integrate eco-driving through a hierarchically optimized assumption that optimizes EMS and eco-driving separately. Such kinds of approaches may lead to sub-optimal results. To fill this gap, we design a multi-agent reinforcement learning (MARL) based optimal energy-saving strategy for HEV, achieving a cooperative control on the powertrain and car-following behaviors to minimize the energy consumption and keep a safe following distance simultaneously. Specifically, a plug-in HEV model is regarded as the research object in this paper. Firstly, the HEV energy management problem in the car-following scenario is decomposed into a multi-agent cooperative task into two subtasks, each of which can conduct interactive learning through cooperative optimization. Secondly, the energy-saving strategy is designed, called the independent soft actor–critic, which consists of a car-following agent and an energy management agent. Finally, the performance of velocity tracking and energy-saving are validated under different driving cycles. In comparison to the state-of-the-art hierarchical model predictive control (MPC) strategy, the proposed MARL method can reduce fuel consumption by 15.8% while ensuring safety and comfort.

Keywords: Hybrid electric vehicle; Energy management strategy; Multi-agent reinforcement learning; Car-following; Eco-driving (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (18)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922018207
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:332:y:2023:i:c:s0306261922018207

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2022.120563

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:332:y:2023:i:c:s0306261922018207