Thermodynamic modeling and optimization of hybrid linear concentrating photovoltaic and mechanically pumped two-phase loop system
Guanru Li,
Qingsong Hua,
Li Sun,
Ali Khosravi and
Juan Jose Garcia Pabon
Applied Energy, 2023, vol. 333, issue C, No S0306261922018049
Abstract:
Linear concentrating photovoltaic (LCPV) is a promising technology to increase the power density of the solar power generation system. However, the efficiency of LCPV is highly undermined due to inefficient thermal management. Active cooling-based thermal management via a mechanically pumped two-phase loop (MPTL) system can facilitate the heat transfer across LCPV. However, efficient thermal management and waste heat utilization are still challenges due to high heat flux, complex two-phase dynamics, strong internal couplings and dynamic external environment. To simultaneously address these crucial parameters, this paper presents a mathematical model for the hybrid LCPV-MPTL system, including two-phase flow and other auxiliary components. An iterative solution algorithm is proposed to derive the steady-state values under different conditions. Simulations under four operating conditions have been performed based on the developed model, indicating the effects of each parameter. A multi-parameter optimization problem with several constraints is formulated by taking the changing solar irradiation intensity and other environmental factors into account, maximizing the net output of electrical energy while satisfying the safety and operational requirements. Finally, exergy analysis is carried out, showing that the hybridization of MPTL with LCPV can improve its overall exergy efficiency by 6.9%, resulting in high performance PV with greatly controlled cell temperature. In all, the scientifically viable thermal management solution and the underlying design guidelines can be inferred for industrial applications.
Keywords: Linear concentrating photovoltaic; Mechanically pumped two-phase loop; Thermodynamic optimization; Solar energy; Energy transition (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922018049
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:333:y:2023:i:c:s0306261922018049
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2022.120547
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().