Overcoming the uncertainty and volatility of wind power: Day-ahead scheduling of hydro-wind hybrid power generation system by coordinating power regulation and frequency response flexibility
Shuo Han,
Mengjiao He,
Ziwen Zhao,
Diyi Chen,
Beibei Xu,
Jakub Jurasz,
Fusheng Liu and
Hongxi Zheng
Applied Energy, 2023, vol. 333, issue C, No S0306261922018128
Abstract:
Uncertainty and instantaneous volatility of wind power make it crucial to schedule the hydropower scientifically to supply flexibility at multiple timescales in renewable energy hybrid power generation systems (RHPS). However, current day-ahead scheduling strategies do not consider the flexibility of time scales below the minimum scheduling time resolution, resulting in insufficient flexibility in intraday operation, power curtailment and load loss. Therefore, in this paper, day-ahead scheduling model coordinating power regulation flexibility (PRF) at 15 min timescale and frequency response flexibility (FRF) at seconds timescale is proposed for hydro-wind hybrid power generation system (HWHPS). Meanwhile, the ability, benefits, and costs of hydropower on supplying flexibility in HWHPS are studied in detail. First, the demand and supply for PRF and FRF are defined and quantified at different confidence levels considering the regulation characteristics of hydropower units. Then, a heuristic piecewise method is utilized to linearize the nonlinear FRF expression, and a day-ahead scheduling MILP model of the HWHPS is constructed. The MILP model is applied to a HWHPS composed of a hydropower station in southwest China and a virtual wind farm simulated based on the data representative for the hydropower station region. We found that the available hydropower flexibility has potential in reducing the maximum frequency deviation, wind power curtailment and load loss. Meanwhile, hydropower provides flexibility at the cost of hydro energy loss due to increased water consumption, especially for supplying FRF during periods of high wind penetration. Finally, since benefits and costs are affected by different confidence levels, a comprehensive index is proposed to evaluate different capacity ratios and scenarios to suggest confidence levels for day-ahead scheduling. Decision makers can also refer to the flexibility supply capacity of hydropower station to select the connected wind power capacity and system load to ensure comprehensive benefits. The methods, models and conclusions in this study can provide a valuable reference for the planning and dispatching of HWHPS, which contributes to the reliability and stability.
Keywords: Hydropower flexibility; Renewable energy integration; Day-ahead scheduling; Confidence level; Comprehensive evaluation; MILP (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (19)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922018128
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:333:y:2023:i:c:s0306261922018128
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2022.120555
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().