EconPapers    
Economics at your fingertips  
 

BIM-supported automatic energy performance analysis for green building design using explainable machine learning and multi-objective optimization

Yuxuan Shen and Yue Pan

Applied Energy, 2023, vol. 333, issue C, No S0306261922018323

Abstract: Supported by the combination of the advanced BIM technique with intelligent algorithms, this paper develops a systematic framework using explainable machine learning and multi-objective optimization to realize the automatic prediction and optimization of building energy performance towards the sustainable development goal. There are three critical parts incorporated, including the DesignBuilder simulation, BO-LGBM (Bayesian optimization-LightGBM) and an explainable method SHAP (SHapley Additive explanation)-based prediction and explanation of building energy performance, and AGE-MOEA algorithm-based multi-objective optimization (MOO) under sources of uncertainty. It has been verified in a case study for green building design. Results show that: (1) The predictive BO-LGBM model can make a highly precise prediction in agreement with the simulation data, reaching up the R2 larger than 93.4% and MAPE smaller than 2.13%. From the SHAP calculation, features related to the HAVC (Heating Ventilation and Air Conditioning) system tend to contribute more to affecting the prediction results. (2) The AGE-MOEA-based optimization can identify a set of Pareto optimal solutions in simultaneously minimizing the building energy consumption, CO2 emission, and indoor thermal discomfort degree, arriving at the highest optimization rate of 13.43% under proper adjustment of certain features. (3) In the MOO task, the consideration of model and data uncertainty by prediction intervals and Monte-Carlo simulation can further increase the optimization rate by around 4.0% than the deterministic scenario, resulting in more desired strategies in optimizing the green building performance. In short, this paper enriches the area of green building development. For one thing, it raises the transparency and interpretability of machine learning to make the prediction more convincing. For another, it efficiently determines the passive and active design solutions along with the detailed profile of influential factors for green building design.

Keywords: Building energy performance; Green building design; Ensemble Learning; Model explanation; Multi-objective Optimization (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922018323
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:333:y:2023:i:c:s0306261922018323

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2022.120575

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:333:y:2023:i:c:s0306261922018323